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ABSTRACT

Modern communication channels, such as digital cellular telephony, often convey human speech in a
highly encoded form. Methods that rely on human subjects to evaluate the quality of such channels are too
costly to deploy on a large scale; thus, automated methods are often used to model quality as perceived by
humans.  Traditional automated methods that use Signal to Noise Ratios (SNR) to judge the quality of
channels do not model human perception well when applied to highly encoded speech. For this reason,
researchers investigate alternative means to objectively measure the quality of such channels. In this paper
we explore the feasibility and applicability of using automated speech recognition technology to model
human perception of the quality of communication channels that carry highly encoded (compressed) human
speech.

We selected segments of speech from a widely accepted speech data base, and passed those segments
through a speech recognizer under three conditions: (1) without encoding, (2) with encoding and decoding
using a standard algorithm for speech compression, and (3) with encoding, transmission across a noisy
channel, and then decoding.  Speech recognition scores were computed for each speech segment under each
condition. We then selected a subset of the speech segments, and asked human listeners to subjectively
evaluate the intelligibility of the speech under the same conditions earlier input to the speech recognizer.
We computed the correlation between the intelligibility of speech as evaluated by the automated recognizer
and the human listeners. For speech segments used to train the recognizer, the correlation was .816 ± .064
(2 stdevs). For other speech segments, the correlation was .745 ± .074 (2 stdevs). These results are
sufficient to encourage us to investigate the performance of commercial speech recognizers against human
listeners on a more objective basis. Specifically, we envision scoring speech recognizers and human
listeners on identical speech-to-text transcription tasks, and then computing the correlation in performance.
If the next phase of this research yields acceptable results, then construction of an automated evaluation
system, based on speech-to-text transcription, should be straightforward. Availability of an effective
automated evaluation system will be useful to researchers and product engineers who are working toward
advances in speech encoding algorithms for wireless communication channels and for Internet channels.

Keywords: network metrology, automated speech quality measurement, digital speech encoding,
wireless communications, Internet voice
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1. Introduction

Toll quality speech is limited to frequencies less than 4 kHz. Applying the well-known Nyquist sampling
criterion, digitizing voice over this frequency range requires at least 8000 samples per second. Telephony
applications allocate 8 bits of µ-law encoded data to provide toll quality voice calls. Thus, 64 Kbps of
bandwidth are required to transmit digital speech with toll quality.  However, since the actual information
content in speech can be carried in much lower bandwidth, researchers seek methods to encode toll quality
speech using only a few kilobits per second. For example, one such technique is Code Excited Linear
Prediction, commonly known as CELP [CELP91]. Using CELP, the bandwidth requirements for speech
have been reduced to 4.8Kbps with only marginal reduction in the quality of the speech signal. With this
great reduction in bandwidth requirements comes a greater sensitivity to noise in signal transmission.
Consider that for CELP each bit represents a greater portion of the signal than is the case for digitized,
uncompressed speech.  When transmitted over copper or fiber optic lines, noise is usually sufficiently small
to go unnoticed by the listener.  However, in the quickly growing field of wireless communication (e.g.,
cellular and cordless phones) noise is a much more serious problem. In addition, for applications where
voice is sent over Internets, packet loss due to congestion can adversely affect the transmission of digital
speech by causing dropouts or failure to meet real-time constraints.  These factors contribute to a continued
interest in coding algorithms for digital speech.

Methods to measure the relative effectiveness of coding algorithms are necessary in order to compare
competing approaches over a range of conditions. The most common method employs human listeners to
grade perceived speech quality by assigning an opinion score from a subjective scale, typically consisting
of five values from excellent to unsatisfactory [KOHL97, LI98]. While producing the desired comparisons,
methods that depend on human subjects are too costly and time consuming to deploy on a large scale.  For
this reason, we seek new metrics for automatically evaluating the effectiveness of speech encoding
algorithms. Such metrics must be objective, economical (in both time and money), and reflective of speech
intelligibility as perceived by human listeners. This paper reports results from a preliminary investigation of
the use of automated speech recognition technology as a means to evaluate coding algorithms for digital
speech.

The paper is organized into seven sections. First, we discuss related work. Second, we present our
motivation. Third, we describe our research methodology, and discuss the speech samples we used for the
experiments. Fourth, we describe our experimental results with respect to both an automated speech
recognizer and to human listeners. Fifth, we discuss the correlation between the performance of the speech
recognizer and the perceptions of the human listeners. Sixth, we identify some future research related to our
proposed evaluation method. Finally, we present our conclusions from the current experiments.

2. Related Work

Traditional automated systems for measuring transmission channel quality employ signal-to-noise ratio
(SNR) or segmental SNR (SEGSNR), or a frequency variant of SEGSNR [QUAC88]. SNR and SEGSNR
are traditional metrics used in electrical engineering and related applications. While easy to measure and
useful to assess selected encoding schemes, metrics based on SNR do not by themselves indicate the
potential loss in recognition of compressed digitally encoded human voice signals. Quackenbush, for
example, reports that metrics based on SNR apply only to waveform coders, to subband coders, and to
adaptive transfer coders, but not to vocoder-like systems, such as CELP [QUAC88].  In fact, Quackenbush
measured the correlation between subjective human listener opinions and objective scores for SNR (.24),
SEGSNR (.77), and a frequency-weighted variant of SEGSNR (.93) across a variety of waveform encoders.
His results indicate that only the frequency variant of SEGSNR correlated well with human perceptions.
Quackenbush also evaluated a wide range of objective measures that could possibly apply to vocoder-like
systems. Most of these measures exhibited poor correlation with human perception. One single measure,
spectral distance, achieved a correlation of .80, while two composite metrics scored .82 and .86.
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Researchers continue to search for objective quality metrics that can be applied to vocoder-like systems.
For example, Kubichek and others report results from investigating several such metrics proposed to the
International Telecommunications Union (ITU) for standardization [KUBI91, KUBI92]. As with SNR
metrics, the metrics discussed by Kubichek measure differences between specific characteristics in channel
input and output signals. Kubichek reports correlation between subjective human perception and three,
single objective metrics: Cepstral Distance (.95), Coherence Function (.91), and Information Index (.83).
Kubichek also reports correlation results for four composite metrics that use Bayesian estimation to seek
relationships between parameter values and objective quality.  Each of the composite metrics is composed
from different combinations of single, objective metrics.  The measured correlation ranged from .88 to .99.
The best result was obtained by combining Cepstral Distance (CD) with Information Index (II). Other
researchers report substantially different results. Bayya and Vis, for example, investigated objective
measures for speech quality in wireless communications under different noise, distortion, and processing,
and found that SNR and spectral distance measures provided the best correlation (.72) with subjective
human perception [BAYY96]. Lam, and others, investigated objective speech quality measures for analog
cellular telephones, and report the correlation with human perception for several metrics: Mel spectral
distance (.86), Bark spectral distance (.84), coherence function (.81), and information index (.81) [LAM96].

Other researchers investigate the possibility of measuring the quality of speech channels by transforming
the channel input and output signals into an internal representation of the sound that a human would hear.
Beerends and Stemerdink propose a perceptual speech-quality measure (PSQM) based on transforming a
physical signal into a psycho-acoustical model that considers the masking behavior of the human auditory
system [BEER94]. They report correlation as high as .99 between PSQM and subjective evaluation by
human listeners. Hauenstein also investigated the effectiveness of an objective measure akin to PSQM, and
found correlation with human perception that ranged from .77 to .95, depending on the voice-coding
algorithm in use [HAUE98].  Hansen and Kollmeier evaluated an objective measure for speech quality
based on a psycho-acoustical model, finding correlation with subjective perception that varied from .88 to
.93 depending on the voice-coding algorithm and the network connection in use [HANS97]. Similarly,
Petersen and others, considering a psycho-acoustical model composed from four individual signal
characteristics, computed a correlation of .94 with subjective ratings of speech quality from 40 subjects
using 21 different rating scales [PETE97]. The correlation for each characteristic, when considered alone,
was lower, ranging from .79 (bass/nasal) to .93 (hissing/crackling).

Voran and Sholl evaluated a number of objective measures for speech quality applied to a range of coding
schemes and channel error conditions [VORA95].  Measures based on SNR and CD were found to be
unreliable predictors of human assessment (correlation values ranged between .34 and .74, with one data
set yielding a value of .97). More reliable predictions were observed for Bark Spectral Distortion
(correlation ranged from .68 to .93) and for two variants of PSQM (correlation ranged from .74 to .89).
Voran and Sholl conclude that highly detailed perceptual transformations, as proposed for example by
Beerends and Stemerdink, do not prove particularly beneficial as predictors of human assessments of
speech quality. Instead, Voran and Sholl suggest that improved distance measures provide better predictors.

While most proposed objective measures compare differences in input and output signals, Jin and Kubichek
propose a metric based on comparing a quantized version of the output signal with a quantized version of a
high-quality, reference signal [JIN96]. Their premise is that distorted speech will not match the entries in
the reference codebook. Thus, they define metrics based on the distance between quantized units in the
output signal and quantized units in the codebook.  They test their metric against human opinion over a
range of data sets, finding correlation values that vary from .46 to .93.

3. Motivation

Most previous work on objective measures for speech quality seeks some easily measurable combination of
parametric differences between channel input and output signals that can reliably predict how humans will
perceive the quality of the output signal.  In the vast majority of cases, subjective human perception is
captured as a mean opinion score (MOS) that ranges from 5 (excellent) to 1 (unsatisfactory) [KOHL97,
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LI98]. As discussed by Kubichek, the inherent variability of listeners and differing interpretations of the
rating scale inhibits the reliability of MOS estimates [KUBI91]. These difficulties might compound as the
number and granularity of scales to be scored increases. For example, Quackenbush measures subjective
human perception for sixteen specific signal characteristics, where each characteristic can be distinguished
on a 100-point scale [QUAC88].  This inherent variability might account for much of the variability
reported by researchers who attempt to correlate objective measures with MOS.

To assess speech quality using objective measures, an automated measurement system should have five
characteristics. First, the objective measures should provide a reasonably close approximation to human
perception of intelligibility, and should be able to distinguish between degrees of intelligibility with the
same resolution as human listeners.  Second, tests should be repeatable, so independent tests of the same
systems under the same conditions should achieve the same results. Third, the measurement system should
operate effectively over a useful range of speech quality. Fourth, measurements must be computed within a
reasonable delay. Fifth, the costs of making measurements must not be prohibitive.

In thinking about these characteristics, we investigated test methods for assessing the quality of speech
recognition systems. We found a test method that uses reference speech data and performance metrics to
compare the performance of various speech recognizers [HTK97, GARF93]. Inverting this method, we
wondered if speech recognizers might be an effective reference against which to measure speech quality on
digital transmission channels.  Could changes in the performance of a speech recognizer reflect changes in
the quality of speech as perceived by human listeners? If so, could an automated measurement system
based on the objective performance of a speech recognizer attain the desired characteristics discussed in the
preceding paragraph? We suspect a positive answer to both questions.

We foresee a quality score that might prove more reliable than MOS, yet still reflect differences in
intelligibility as perceived by human listeners.  Specifically, if a human subject were asked to transcribe the
words from a speech segment and that transcription could be compared with the transcription generated by
a speech recognizer for the same segment, then the correlation between human perception and automated
objective measures could perhaps be made with greater reliability.  If our ideas can be confirmed, then a
new approach to objective measures for speech quality might prove feasible. Before proceeding to test our
hypothesis, we decided to investigate how well a speech recognizer would perform as a predictor of MOS.
This paper reports the findings of our initial investigation.

4. Research Methodology

Figure 1 illustrates the method used to generate speech samples for input to a speech recognizer, and for
evaluation by human listeners.  As documented in Table 1, we selected nineteen speakers from the TIMIT
database, a widely accepted database of labeled speech segments that has been used to evaluate speech
recognizers, developed by researchers with funding from DARPA (Defense Advanced Research Projects
Agency). [GARF93] Although the TIMIT database includes speakers from eight different dialect regions
within the United States, the speakers we selected were from only two regions: New England and Northern.
We selected the New England region because we had access to a speech recognizer already trained for
speakers from that region; this saved us time. We selected speakers from the northern region for variety.
Each speaker spoke sentences, chosen for phoneme variety, ranging between 24 and 42 seconds in
duration, with a median of approximately 30 seconds. In reporting results later in this paper, a unique
number, taken from the TIMIT database, identifies each speaker.  While the TIMIT database divides the
speech samples from each region into two categories, training samples and testing samples, we used only
the testing samples from the New England region (speakers number one through eleven in Table 1) to train
the speech recognizer. This reinforced the recognizer’s initial training for speakers from New England.
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Table 1. Information Describing Speakers Selected from the TIMIT Database

Speaker
Number

TIMIT
ID

Speaker
Gender

Dialect
Region

TIMIT
Use

Recording
Date

Birth Date Educa-
tion

Listening
Tests

   1 AKS0 Female NE Testing 04/01/1986 12/05/1956 PHD USED
2 DAC1 Female NE Testing 03/12/1986 11/05/1918 HS
3 ELC0 Female NE Testing 02/26/1986 05/20/1954 BS USED
4 JEM0 Female NE Testing 02/11/1986 11/06/1951 MS USED
5 DAB0 Male NE Testing 04/21/1986 12/15/1962 BS
6 JSW0 Male NE Testing 04/16/1986 07/15/1953 MS
7 REB0 Male NE Testing 02/25/1986 12/04/1958 BS USED
8 RJO0 Male NE Testing 02/25/1986 05/15/1951 BS
9 SJS1 Male NE Testing 02/11/1986 07/23/1960 BS

10 STK0 Male NE Testing 04/17/1986 12/04/1960 BS USED
11 WBT0 Male NE Testing 03/26/1986 05/24/1934 BS USED
12 AEM0 Female North Training 02/27/1986 05/13/1960 BS USED
13 DNC0 Female North Training 02/12/1986 04/27/1946 HS USED
16 DLC2 Male North Training 04/09/1986 11/18/1959 MS USED
17 DMT0 Male North Training 01/31/1986 07/13/1956 MS USED

101 CJF0 Female NE Training 04/18/1986 08/31/1962 BS USED
102 DAW0 Female NE Training 02/28/1986 07/18/1960 HS USED
103 CPM0 Male NE Training 01/30/1986 02/18/1962 BS USED
104 DAC0 Male NE Training 02/11/1986 11/29/1960 BS USED

As illustrated in Figure 1, phonetically
labeled speech samples from TIMIT were
processed along three different paths to
produce digital speech for input to a speech
recognizer and for evaluation by human
listeners. The first path yields uncoded
speech (Condition U) by simply
forwarding the speech samples directly
from the TIMIT database.  The second path
uses CELP to encode and then decode the
TIMIT speech samples; thus, producing
decoded speech (Condition C). On the
third path, after CELP encoding, pseudo-
random bit errors are introduced into the
encoded data to simulate a noisy
transmission channel, and then the speech
samples are decoded.  For the experiments

reported here, we used six Bit Error Rates (BERs): .1%, .5%, 1%, 2%, 5%, and 10%, yielding six segments
of speech (Conditions E1-E6) from each TIMIT sample. As a result of applying these three paths, the 19
speakers selected from the TIMIT database yielded 152 speech samples for input to the scoring phase of
our experiment. In order to reduce the number of human listeners required for scoring, we selected only 14
of the 19 speakers from the TIMIT database. We elected to eliminate speakers with strong regional (New
England) accents, which might have tended to confuse our listeners, who were primarily from the Mid-
Atlantic region. Further, we discarded the samples produced with a BER of 10%, because we decided that
all human listeners would judge these to be unintelligible. In summary, we scored the speech recognizer
against 152 speech samples, while we asked human listeners to consider only 98 of those 152 samples.

Figure 2 depicts the general outline we used to score the speech samples, and then to assess the correlation
between the recognizer results and human perceptions. The figure can be considered in three blocks: (1)
automated scoring using a speech recognizer, (2) subjective scoring by human listeners, and (3) correlation
analysis. We address each of these in turn.

Labeled Speech
from the TIMIT

Database
CELP Encoder

CELP Decoder

Noisy Channel
with Six Error

Rates between
.1% and 10%

CELP Decoder

6

Uncoded Speech
(Condition U)

Decoded Speech
(Condition C)

Decoded Speech with Bit Errors
(Conditions E1-E6)

Figure 1. Method Used to Generate Speech Samples
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Figure 2. Method of Scoring Speech Samples and Correlating Scores

Automated Scoring Using A Speech Recognizer. For the experiments reported here, we used a speech
recognizer, HTK, readily available at NIST [HTK97]. The recognizer was included in the HTK Toolkit,
available from Entropic Research Laboratory, Inc., and developed at Cambridge University. HTK uses
Hidden Markov Models to achieve speech recognition [RABI93]. The HTK speech recognizer generates a
set of speech labels indicating each phoneme recognized in an input speech sample.  The recognizer adds a
time stamp to each label. In order to score the performance of the recognizer, we used a scoring package
included in the toolkit. The scoring package generates several statistics, including correctly recognized
phonemes, insertions, deletions, and substitutions. In addition, the scoring package produces a confusion
matrix indicating which phonemes were substituted for each of the input phonemes.  In this experiment, we
used only the number of phonemes correctly recognized, which we divided by the total number of

Human Listener Human Listener Human Listener

Subjective
Intelligibility

Scores
Condition U

Subjective
Intelligibility

Scores
Condition C

Subjective
Intelligibility Scores
Conditions E1-E5

Uncoded Speech
(Condition U)

Decoded Speech
(Condition C)

Decoded Speech with Bit Errors
(Conditions E1-E5)

5

Correlation Analysis
Correlation
fTraining
S lCorrelation
fOther
S l

Speech
Recognizer

Speech
Recognizer

Speech
Recognizer

Recognition Scores
and Labels
Condition U

Recognition Scores
and Labels
Condition C

Recognition Scores
and Labels

Conditions E1-E6

Uncoded Speech
(Condition U)

Decoded Speech
(Condition C)

Decoded Speech with Bit Errors
(Conditions E1-E6)

6

Automated Scoring Using a Speech Recognizer

Subjective Scoring by Human
Li
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phonemes in each speech sample in order to compute the percentage of phonemes recognized. Each of the
speech samples was prepared for proper sampling rate and data format before being passed to the speech
recognizer.

Subjective Scoring by Human Listeners. Since human listeners could not be asked realistically to identify
phonemes in the speech samples, we had two options. We could ask human listeners to transcribe each
speech sample, [EBEL95] or we could ask human listeners to subjectively score the intelligibility of each
speech sample. In order to obtain a sufficient number of human listeners, we decided to reduce the time
commitment for each listener by using subjective scoring.

We recruited fourteen volunteers to listen to and then subjectively score the intelligibility of speech
samples played through a loudspeaker.  Each volunteer was asked to listen to fourteen samples, and then to
score each sample on a scale of one to five, as explained in Table 2, which gives the instructions for
volunteers in the listening tests. We ensured that two different volunteers listened to each sample; thus, the
98 input samples were doubled to give 196 test samples.

Table 2. Instructions to Volunteers for Subjective Listening Tests

You will listen to a set of speech samples. Each sample consists of a single speaker
saying several sentences. You will be asked to judge the overall quality of the several
sentences. You may adjust the loudspeaker volume using the buttons on top of the
loudspeaker. You will be given the opportunity to replay the speech sample before
scoring.

Please judge the samples for intelligibility using the following scale:

5 – Excellent Quality and Easily Understandable
4 – Good Quality but still Easily Understandable
3 – Not Very Good Quality, but Mostly Understandable
2 – Poor Quality, Difficult to Understand
1 – Extremely Poor Quality, Mostly or Completely not Understandable

Note: Rightmost loudspeaker button raises volume.
          Button next to rightmost button lowers volume.

 Correlation Analysis. Before assessing the correlation between the speech recognizer and human listener
results, we performed a visual screening to identify factors responsible for variation in the data.  Given that
we tested over a range of bit error rates and that we used two different classes of speech samples, those
used to train the recognizer and those not, we expected that both of these factors would account for any
variation observed in the data.  We used a simple graphical analysis to verify our expectations. We did not
analyze the human listener data in this manner because the low granularity of the responses as coded would
yield little insight.

After assessing the experimental data, we used correlation analysis to estimate how well the speech
recognizer scores predicted the judgment of human listeners.  We considered separately two classes of data:
data based on speech samples from speakers one through eleven (used to train the recognizer) and data
based on the other eight speech samples. The results follow.
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5. Experimental Results

The first experiment applied a speech recognizer to the various speech samples generated. The second
experiment asked human listeners to evaluate a select, but substantial, subset of the speech samples
generated.

5.1 Results from Automated Speech Recognition Tests

Table 3 gives the average phoneme recognition scores obtained for each experiment conducted using the
speech recognizer against the generated speech samples.  We used all 19 speakers, identified in column
one. Each of the remaining columns gives the results for each speaker under specific encoding and error
conditions. The second column depicts results without CELP encoding and decoding, and without
introducing errors. The remaining columns show results with CELP encoding and decoding, and with a
variety of bit error rates (BER) injected between the encoding and decoding steps.  The injected bit error
rates range from 0% to 10%.  The shaded rows (speakers one through eleven) correspond to speakers used
to train the recognizer. Note that for one sample, Speaker Number 6 with CELP .5% BER, the speech
recognizer failed, so we report no data.

Table 3. Average Phoneme Recognition Scores from Speech Recognizer Experiments

Speaker
Number

No CELP
0% BER

CELP
0% BER

CELP
.1% BER

CELP
.5% BER

CELP
1% BER

CELP
2% BER

CELP
5% BER

CELP
10% BER

1 96.10 69.37 58.56 61.56 55.56 56.76 45.65 35.44
2 93.88 73.39 49.85 65.75 62.39 54.74 47.71 35.47
3 94.89 63.35 49.72 52.84 52.84 53.12 37.22 32.67
4 90.88 66.10 63.53 60.11 60.11 56.41 41.88 37.89
5 91.92 58.08 56.59 55.39 49.70 43.71 32.04 26.65
6 90.19 70.57 66.46 No Data 61.71 55.70 45.25 35.13
7 90.45 71.35 69.10 66.57 58.43 58.43 46.91 39.61
8 88.64 56.82 49.30 46.43 41.56 41.23 35.71 31.17
9 88.74 58.94 51.99 48.68 48.34 43.71 32.78 31.79

10 93.88 70.03 64.83 62.39 59.02 49.54 35.47 30.58
11 95.08 75.08 73.54 68.31 60.62 55.38 46.46 38.77
12 58.23 44.82 46.95 45.12 38.11 41.46 36.89 33.84
13 50.87 45.95 40.46 30.64 41.04 40.46 31.50 31.21
16 53.58 50.47 48.60 46.11 45.79 43.61 40.19 28.35
17 52.37 52.68 52.05 48.58 45.75 42.59 32.81 32.49

101 48.46 43.54 36.73 37.07 37.76 36.73 32.31 34.35
102 53.94 46.67 47.58 36.97 44.85 40.61 34.85 31.82
103 52.26 47.74 45.81 46.13 42.90 43.23 40.32 31.61
104 55.87 51.29 50.43 49.57 46.42 40.69 37.54 30.37

The box plots [TUKE77] of Figures 3, 4, and 5 provide a more easily comprehended view of the results.
Each box plot gives the minimum, median, and maximum scores, and encloses within a bounding box the
interquartile range, where the middle fifty percent of the scores fall. Figure 3 contains eight box plots used
to visually screen the data. Each box plot in the figure graphs two distributions of data from one column of
Table 3. One distribution, shown in gray, represents the performance of the speech recognizer on speech
samples used to train the recognizer (speakers number 1 through 11), while the other distribution represents
the performance of speech samples for the remaining speakers.  These box plots confirm our expectation
that the performance of the speech recognizer differs significantly for the training speakers versus other
speakers across all error rates. For this reason, we chose to separate these two classes of speakers for
purposes of computing correlation with the human listeners. Figure 4 shows the distribution of data
obtained for each column of Table 3 across the eleven speakers used to train the recognizer.  For each set of
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degradation conditions, the figure Similarly, Figure 5 portrays the results for the eight speakers who were
not used to train the recognizer. A monotonically decreasing pattern is observed as expected.
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Figure 3. Visual Screening Showing the Training Effect for All Bit-Error Rate Categories

Some Observations. We were struck by the degree to which the speech recognition diminished for CELP-
encoded speech samples, especially for speakers whose speech was used to train the recognizer.  While not
germane to the specific topic of this paper, we wonder how this result applies to the growing use of speech
recognition technology across telephone calls.  Will speech recognizers work as well for cellular telephones
as they do for wire-line telephones?

5.2 Results from Human Listening Tests

Table 4 gives the average quality score computed for each speaker at each encoding and error rate in the
human-listening tests.  The last row of the table contains the average quality score computed across all
speakers for the encoding and error rate depicted in each column. As expected, listeners judged the quality
good to excellent for the unencoded speech and for CELP-encoded speech without errors. For CELP-
encoded speech with .1% BER, the listeners found the speech understandable to good. As the BER reached
.5%, listeners found the speech to be understandable but of poor listening quality.  Understanding and
quality dropped somewhat when the error rate rose to 1%. At the 2% error rate, listeners had difficulty
understanding the speech samples. With a 5% BER listeners judged the speech to be practically
unintelligible.

The reader should note that the human listening tests are much more subjective than the tests conducted
with the speech recognizer because two listeners might judge the same speech samples differently. Also,
the human listening tests have a much coarser, discrete scale for scoring the intelligibility of speech, as
compared with the continuous percent phoneme recognition scale used with the speech recognizer.  Despite
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these differences, we can still evaluate correlation between the results obtained with human listeners and
those obtained with the speech recognizer.
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Figure 4. Performance of Speech Recognizer for Trained Speakers

Table 4. Average Speech Quality Assigned by Human Listeners

Speaker
Number

No CELP
0% BER

CELP
0% BER

CELP
.1% BER

CELP
.5% BER

CELP
1% BER

CELP
2% BER

CELP
5% BER

1 5.0 4.0 4.0 3.5 3.0 2.5 2.5
3 5.0 3.0 3.0 3.5 3.0 1.5 1.5
4 4.5 3.5 4.0 3.0 2.5 3.0 2.0
7 5.0 4.0 3.5 2.5 3.0 2.0 1.0

10 5.0 4.0 3.5 3.5 3.0 2.0 1.0
11 5.0 4.5 4.0 3.0 4.0 2.0 1.5
12 4.5 4.0 3.5 3.0 2.5 2.5 1.0
13 5.0 5.0 3.5 3.0 3.0 2.5 1.5
16 4.5 4.0 4.0 3.5 3.5 2.0 1.0
17 5.0 4.0 3.5 4.0 3.0 2.5 1.5

101 4.5 3.5 3.0 2.0 2.0 1.5 1.0
102 5.0 3.5 4.0 3.0 2.5 2.0 1.0
103 4.5 3.5 3.0 3.0 1.5 1.5 1.0
104 5.0 5.0 4.0 3.0 2.5 2.0 1.0
All 4.82 3.96 3.61 3.11 2.79 2.11 1.32
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Figure 5. Performance of Speech Recognizer for Untrained Speakers

6. Results from Correlation Analyses
To assess the degree to which results from a speech recognizer can predict the quality and intelligibility of
speech as perceived by human listeners, we compute the correlation between subsets of our two data sets.
We consider the speech samples in two distinct sets: speakers used to train the speech recognizer and other
speakers. Figure 6 plots human listener judgments against percent phoneme recognition from the speech
recognizer for the eleven speakers used to train the speech recognizer. We computed the correlation at .816
± .064  (2 stdevs). For the other eight speakers, Figure 7, we computed the correlation at .745 ± .074 (2
stdevs). The estimates of standard error were computed using resampling (bootstrap) [DIAC83]. To
confirm these findings, we also computed correlation values using Spearman rank correlation [SACHS82].
The Spearman rank correlation for our training speakers is .789 and for the other speakers is .775. These
values are the same whether the statistic is computed in the standard fashion as the correlation of the ranks
of the scores, or whether an adjustment for ties in the scores is used. While the plots and correlation
coefficients demonstrate clearly the monotone association between human and machine judgments of
quality, the plots also display the inherent variation in the relation. Similar variation appears in other
research the compares objective quality measures with human perception [BROO98].

7. Future Research
Our next step is to compare the ability of commercial speech recognizers and human listeners to transcribe
speech samples under the same conditions reported in this paper.  While we expect human listeners to be
superior to speech recognizers in all cases, if we can establish a relationship between the performance of



01/28/99 11

human listeners and speech recognizers, then we can consider building and deploying a test system for
automatically scoring speech coding algorithms.  We foresee a system that enables developers to select
speech samples from a database and to select from among a range of speech recognizers.  The developer
could also select from a range of error models and rates, including independent bit errors, alternating
periods of good and bad channel signals, and various packet switching network properties.  With such a test
system, developers could explore the properties of proposed speech coding and decoding algorithms under
a range of conditions.

Beyond the use of speech recognizers for automated scoring of network-based speech coding algorithms,
we can imagine applying techniques emerging from image understanding research to develop similar test
systems for image and video coding schemes used for network transmission.  Of course, image
understanding research is less well developed than speech recognition research. Still, edge-detection
techniques and object-extraction techniques seem worth investigating for this purpose.  The development of
multi-media coding and transmission algorithms could be greatly accelerated by the ability to automatically
score performance in a manner consistent with human perception.
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Figure 6. Correlation: Speech Recognizer and Human Listeners for Trained Speakers

8. Conclusions
We selected segments of speech from a widely accepted speech data base, and sent those segments through
a speech recognizer under three conditions: (1) without encoding, (2) with encoding and decoding using a
standard algorithm for speech compression, and (3) with encoding, transmission across a noisy channel,
and then decoding.  Speech recognition scores were computed for each speech segment under each
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condition. We then selected a subset of the speech segments, and asked human listeners to subjectively
evaluate the intelligibility of the speech under the same conditions earlier input to the speech recognizer.
We computed the correlation between the intelligibility of speech as evaluated by the automated recognizer
and the human listeners. For unencoded speech segments used to train the recognizer, the correlation was
.816 ± .064  (2 stdevs). For other unencoded speech segments, the correlation was .745 ± .074 (2 stdevs).
Spearman rank correlation tests confirmed these numbers. These results are sufficient to encourage us to
investigate the performance of commercial speech recognizers against human transcriptions. If the next
phase of this research yields acceptable results, then construction of an automated evaluation system should
be straightforward. Availability of an effective automated evaluation system will be useful to researchers
and product engineers who are working toward advances in speech encoding algorithms for wireless
communication channels and for Internet channels.
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Figure 7. Correlation: Speech Recognizer and Human Listeners for Untrained Speakers
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